شناسایی منبع اصلی مولد صدا در واحد تولید هوای یک صنعت پتروشیمی و ارزیابی اثر محصورسازی آن

محمدرضا منظمآ، سمیه فرهنگ دهقان ۱، پروین نصیری ۲، مهدي جهانگيري ۴

چکیده
مقدمه: مطالعه حاضر با هدف تعیین میزان آلودگی صوتی و شناسایی منبع اصلی تولید صدا در واحد تولید هوای یک صنعت پتروشیمی و تعیین آثر محصورسازی این منبع بر کاهش تراز فشار صوت آن انجام گرفت.

روش بررسی: در فاز اول اجرای طرح کنترلی انتخاب شد. با توجه به میزان اثری‌که انواع روش‌های مرددی کنترا می‌کنند و با نظر گرفتن نتایج آن‌الاین فرکانسی دستگاه و شرایط واحد مورد بررسی، محققین صوتی به عنوان پرگزیده کنترا مهندسی صوت انتخاب و پیشنهادی یکی با ارتباط انجام دادند. محدودیت دانه‌ی ۱۹/۶۴ dBA از تراز کلی صدا باید به آن منعی کاهش خواهد بافت.

نتایج‌گیری: اگرچه به نیازی از واحدی تحت بررسی در ناحیه احتیاط قرار دارد، اما مسلماً عوارض گوناگون مواجهه با آن مقدار در بلندامدت و حتی در کوتاه‌مدت بر روی می‌شوید. در واقع، لزوم است با توجه به اثرات ابداعی و مشکلات فراوان غیرصدایی صوت، جهت اجرای طرح‌های کنترلی بر روی سایرمنابع صدازاسی این مجموعه، اقدامات مقتضی صورت گیرد.

واژه‌های کلیدی: آلودگی صوتی، صدازاسی محیطی، محصورسازی، واحد تولید هوای صنعت پتروشیمی.

مهندسی منظم و هیکاران

مقدمه

تجهیزات آنها می‌باشد. کمپرسور، برخی‌ها نیز از اجزای اصلی خش فرشه سازی محسوب Air Dryer و می‌شوند. همگی کمپرسورها توسط محفظه‌های صوتی پوشیده شده‌اند ولی با این حال، تنوع در نخستین اجزای و ویژگی‌های خاص عملکرد این اجزای مثل مکش و دم‌هوا پیگیر آب، عملیات اصلاح وضع، فردپذیری خشک، هوا رطوبت‌دار و حرکت سیال در لوله و خروج ناحیه‌ای آن‌ها از جمع‌آوری از دیدگاه آئودی‌سی، بدین‌نوعی است.

Air Receiver

در بسیاری از محیط‌های کاری و صنعتی، افراد روزافزون به عواصل مختلف همچون صدا از این‌تل استرس و غیره مواجه می‌شوند که این عوامل بر روی عملکرد آن‌ها تأثیر منفی می‌گذارد.

شناوی است. اگر شناوی کمک کرده و دیگران را دچار اخلال نموده و سپس می‌گردد تا فرد، علاوه‌های نرده دهنه را نشود و همین امر از پیدایش ایده‌های اینی می‌گردد. اگر آن، مواجه به صدا، می‌تواند باعث روش مشکلات اجتماعی و روایت گردد و از طرفی اختلالات نظر تغییرات فیزیولوژیکی شامل افزایش فشار خون، تغییرات در دی‌واره، ریزش و احتیال حمله قلبی را به همراه دارد.

گره پیشرفته‌های زیادی در کاهش صدا تناسب ایجاد شده است. برخی از انتخاب تجهیزات صنعتی و مانند بسیاری، سانس‌های کشوری سنگ سیماده، موتورهای دیزلی، و غیره، هنوز هم، صداً‌سازه‌های در این شرایط، مهندسی صدا محصول کردن در این‌جا و با کلید تجهیزات را می‌باید. باید تاکید کرد که این صدا در منبع، همیشه از اولویت برخوردار است. با این‌که انتخاب کنندگان باید از دیرکه روبیکر سیستم‌کنگی و از منظر جهتی طراحی، محفظه می‌تواند یکی از موتورهای اقدامات کاربردی در دسترس برای مهندسین آکوستیک با شمار آید. اگر آن، صدا این، مطالعات متعددی نشان می‌دهد که محصول‌های جدیدی یا کلی می‌تواند در کاهش صدا بسیار موثر واقع شود (شمار 11-11).

روش بررسی

مطالعه حاضر در واحد تولید هواي مجتمع پتروشیمی فجر در فاز ساخت گرفت، ابتدا صنایع محیطی، با توجه به استاندارد ISO 9612 برای تعیین نمره آئودی‌سی صوتی در می‌شود این مجتمع و شناسایی منابع اصلی صدا، آن صورت یافت (17.2). بین منظر، روش اندازه‌گیری شبکه‌ای منظم، علی‌الی تشخیص واحد تحت بررسی به مربوط می‌باشد.
گرفت. به منظور شناسایی منابع اصلی صدا و نواحی خطر
و احتمال تلفات در مراکز ایمنی، نقاط مزاحم و نقشه
خطوط همکاری آباده گردید. در این نقشه‌ها مناطق کمتر از
45 دسی الی 60 دسی با رنگ سبز (بعدها منطقه ایمن)، مناطق
60-85 دسی با رنگ زرد (منطقه احتمالی) و مناطق مساوی
85 دسی با رنگ قرمز (منطقه خطر) مشخص
گردیدند(17-15).
بازه تریسی ARCGIS نرم‌افزار 9.1
از اپلیکیشن EXCEL 2007 و اپلیکیشن SPSS به
نحوی استفاده از منابع مورد نیاز در این طرح تحقیقاتی مورد
استفاده قرار گرفتند.

جدول 1: نتایج انتخاب فشار صوت دریخات های مختلف وحد ها

<table>
<thead>
<tr>
<th>بخش های مختلف وحد (m2)</th>
<th>تعداد</th>
<th>تعداد</th>
<th>انتخاب فشار صوت</th>
<th>فشار صوت</th>
<th>معیار MEMS</th>
<th>الگو</th>
<th>مجموع</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10000</td>
<td>32</td>
<td>316</td>
<td>6/4</td>
<td>15.2</td>
<td>2</td>
</tr>
</tbody>
</table>

* قسمت‌های جنوبی و غربی بخش ذره‌سازی

باشند. به‌عنوان با نظر گرفتن این مسئله، جهت تعیین
مشخصات صوتی منابع در شرایط عملیاتی، رشته مصدوم
نیاز به اجฉاه استراتژی خاصی وجود دارد. یک راه حل
می‌تواند این استراتژی در شرایط عملیاتی، رشته مصدوم
باشد. البته با این فرض که سهم منابع گسترده در تغییر فشار
صوت آن نقطه، کم‌هایم است. البته در بیشتر موارد منابع
صدای افزایشی هم در دانلند که در نظر گرفتند چنین
فرشته‌ای نامکمل است و به علت منابع، در مقالات مختلف
راحل‌های منافعی به‌رغم این که در باشند.

مشخصات صوتی دریخات های مختلف وحد ها

منابع انتخاب فشار صوت گردیده است(18-19).

منابع انتخای فشار صوت دریخات های مختلف وحد ها

ورشخابی برای تست توانایی انتخاب منابع مصدوم در بین

منابع مختلف تولید صدا، وجود دارد. اما از شناخت‌های

روش‌ها، روش تفاضل صدا زمینه، ومنع است(21). صنعت به دلایل بسیار زیادی مانند سایر اقتصادی

منی‌می‌تواند برای انتخاب منابع، سایر انتخاب منابع

پروش خود را موفقیت نماید. حتی اگر این امر، محقق، شو

پی‌های از منابع آت نمی‌تواند به نهایی، راه‌نوردی

کردن، زیرا امکان دارد آنها بخشی از یک پروش زنجیره‌ای

دورو هفتم، شماره دوم، تابستان 1394

فستیلاتویی منبع اصلی مورد صدا در واحد تولید هوای ...

1246
نقاط اندازه‌گیری در اطراف هر منبع، اندازه‌گیری‌ها در فواصل 0/1 و 1/5 متری در 8 نقطه اطراف منبع (در شیب د جدول 21) انجام گرفت، مقدار حداکثر مطلق Laplace مقیاس حساسیت، ضریب دم و تابستا منبع در فاصله تخصصی طبکار و گولمحمادی و استفاده می‌شناود. می‌توان از این همکاران در پلاس آگاهی بهره برد، صوت پذیرفت بررسی و انالیز فرکانس صدا در 10 استفاده با فاصله نزدیک به هم در جهت دور شدن از منبع مورد نظر و نزدیک شدن به منبع مجاور، توصیه گردد (12).

مراحل کاری یک تولید هوا، استفاده از این روش‌ها را برای تعیین منبع اصلی صدا، فرم اتمسفری این درون به نشانه‌ها صوتی و منحنی‌های اتوسونیک، اکتفا گردد. به منظور تعیین مشخصات صوتی مثل فرکانس اصلی منبع نیز با اکتودار (استاندارد ISO 3745) جهت تعیین می‌شناود.

جدول 2: نتایج محاسبات میانگین های ترزو فشار صوت در بر سه فاصله 0، 1/5 و 1/1 متری در هشت نقطه اطراف منبع فرکانس‌های مختلف لیست‌بندی

<table>
<thead>
<tr>
<th>نقطه</th>
<th>ترزو مجموع (دسیبل)</th>
<th>آنالیز لیست‌بندی (هورتز) - ترزو فشار صوت (دسیبل)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98/64</td>
<td>9/125 9/2/9 9/2/9 77/15 75/0/8 79/0/8 80/0/8 83/0/5</td>
</tr>
<tr>
<td>2</td>
<td>98/68</td>
<td>9/121 9/2/9 9/2/9 77/15 75/0/8 79/0/8 80/0/8 83/0/5</td>
</tr>
<tr>
<td>3</td>
<td>98/68</td>
<td>9/123 9/2/9 9/2/9 77/15 75/0/8 79/0/8 80/0/8 83/0/5</td>
</tr>
<tr>
<td>4</td>
<td>98/68</td>
<td>9/127 9/2/9 9/2/9 77/15 75/0/8 79/0/8 80/0/8 83/0/5</td>
</tr>
<tr>
<td>5</td>
<td>98/68</td>
<td>9/131 9/2/9 9/2/9 77/15 75/0/8 79/0/8 80/0/8 83/0/5</td>
</tr>
<tr>
<td>6</td>
<td>98/68</td>
<td>9/135 9/2/9 9/2/9 77/15 75/0/8 79/0/8 80/0/8 83/0/5</td>
</tr>
<tr>
<td>7</td>
<td>98/68</td>
<td>9/139 9/2/9 9/2/9 77/15 75/0/8 79/0/8 80/0/8 83/0/5</td>
</tr>
<tr>
<td>8</td>
<td>98/68</td>
<td>9/143 9/2/9 9/2/9 77/15 75/0/8 79/0/8 80/0/8 83/0/5</td>
</tr>
</tbody>
</table>

با توجه به تایید از ارزیابی طراحی محیطی منبع صوت در منطقه مرتبط و با در نظر گرفتن ترزو کلی صدا منبع مذکور به منظور بررسی فضای انتشار صدا و وجود مسیرهای انتشار سازنده و هوا، همچنین برای کسب اطلاعات از عملیاتی فنی انجام گردید، اطمینان از عملیاتی فنی طرح کنترل انتخابی نصب افزایش صدا به عنوان گزینه‌های مناسبی انتخاب گردید.
به عنوان دیواره اصلی در طراحی اناک، منجر به ایجاد سطح انعکاسی در اطراف منبع صوتی، می‌گردد و در نتیجه تراز فشار صوت منبع به علت انعکاس مرکز از آن سطوح افزایش خواهد یافت. این وجود منبع صدای مورد نظر، باعث ایجاد ازایده استفاده از یک چند لایه ماده جادب صدا نیاز اساسی است.

در این طرح تحقیقاتی به جای انتخاب یک لایه سخت مثل فوادآ و آمونیمیوم به عنوان دیواره اصلی که به تنهایی افت عبور قابل توجهی را تأمین نمی‌نماید و نیازمند استفاده از لایه‌ای ترکیبی از موادی جادب بر روی آنها می‌باشد و ضمن مطرح شدن بحث انعکاس صوت از محیط خارج اناک در آنها، جهت کنترل صدای منبع مورد بررسی از پرده‌های استفاده شد.

امروزه به کارگیری پرده‌های صوتی به عنوان محفظه کامل یا جزیی به شدت در حال افزایش است. موجب آنها به علت انتخاب شیاب، ماندگاری و مقاومت محیطی زیاد، تنوع و قابلیت تطبیقی بالر آنها و البته نسب آسان و قیمت مناسب‌شان می‌باشد(2).

اختلاف مقداری آنالیز اوتکوئی با حدود نوسیوه شده برای تراز کلی 85 دسی‌بل می‌باشد (جدول 2). تراز صوت (Excess level) منبع مورد نظر در 3 فاکتور در جدول 3 دچ رگیده است. به منظور حذف خطاهای احتمالی و اختلاف نتایج آزمایشگاهی و Build of Factor از مقدار Excess level تحت عنوان اضافه می‌گردد. برای تعیین میزان کاهش مورد نیاز در طبق Factor Build of Factor با اصلح شده از معادله می‌شود(25).

<table>
<thead>
<tr>
<th>جدول 3: محاسبه میزان Noise Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>فاکتور اوتکوئی</td>
</tr>
<tr>
<td>800</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>TL(dB)</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>6/7</td>
</tr>
<tr>
<td>4275</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>TL(dB)</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>11/7</td>
</tr>
</tbody>
</table>

فصلنامه علمی تخصصی طب کار

دورة هفتم، شماره دوم، تابستان 1394
<table>
<thead>
<tr>
<th>TL(dB)</th>
<th>TL corrected (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>1.45</td>
<td>1.45</td>
</tr>
<tr>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.15</td>
<td>2.15</td>
</tr>
<tr>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>2.45</td>
<td>2.45</td>
</tr>
<tr>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>2.75</td>
<td>2.75</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

نتایج

میانگین تراز فشار صوت در کل این واحد، بیش از 88 دسیبل A محسوبه گردد. این دسیبل A هم در بخش فشرده‌سازی رضایتکار. دلیل این مشکل به عنوان نابورتری که جدا از بهبود مبتنی بر قسمت جنوب شرقی بخش تغییرکننده و میزان افزایش کالری در ساختمان‌های اداری بود. همان‌طور که در مجموع موجب 135 پیشگاه‌های تراز صدا اندام‌های گردن و حدود 15 این دسته‌ها نیز به عنوان نابلکور، یک تراز این سایر. نتایج این اندام‌های تراز فشار صوت در بخش‌های مختلف واحد هوا و بخش‌های مربوط به ناحیه این، احتمال و خطر از دیدگاه آلودگی صوتی در جدول 1 درج شده است.

در مجموع در 135 پیشگاه، تراز فشار صدا اندام‌های گردن و حدود 15 این دسته‌ها نیز به عنوان نابلکور، یک تراز این سایر. نتایج این اندام‌های تراز فشار صوت در بخش‌های مختلف واحد هوا و بخش‌های مربوط به ناحیه این، احتمال و خطر از دیدگاه آلودگی صوتی در جدول 1 درج شده است.

فصل‌هایی شامل تخصصی طب کار

دوره هفته، شماره دوم، تابستان 1394
خطر بخش تفکیک در ناحیه شمالی آن (ناحیه کمپرسورها) و بخش فشردهسازی در ناحیه بین کمپرسورها و درابرهای آن می‌باشد. در قسمت‌های شمالی واحد هوا، بیشترین تمرکز ناحیه خطر وجود دارد به این معنی که محوطه کمپرسورها که این ناحیه تا بخش درای عادی فشردهسازی ادامه دارد. با نگاهی عمیق‌تر به منحنی‌های ارزیابی‌های این واحد مشخص می‌گردد که در بخش جنوبی فشردهسازی تراز صدا نسبت به سایر نواحی این واحد، به شدت افزایش یافته است به طوری که در برخی این استگاه‌ها به بالای 100 دسی‌بل هم می‌رسد؛ بنابراین دقتی محل استقرار دستگاه‌های درای این بخش می‌باشد. این دستگاه توسط جابجایی آلودن‌های خود، وظیفه رطوبت‌گیری هوای سرویس را دارد.

طرح که از جدول 1 بر می‌آید، بخش عدم‌ایا از محدوده واحد هوا (حدود 4/05) در ناحیه هشدار با تراز بین 65 تا 85 دسی‌بل A و چسب‌ی در حدود 28/52٪ نیز در ناحیه خطر با تراز بالاتر از 85 دسی‌بل A قرار می‌گیرد. شایان ذکر است که طبق محاسبات انجام شده، حدود 3/49٪ از کل نواحی احتمال نقاط‌بردی که واحدها در این واحد تراز بالاتر از 65 دی‌بل A است.

با مراجعه به نتایج حاصله و به منظور تعیین منابع اصلی صداگذاری و نواحی خطر، پس از انتخاب گری، نتایج در قابل نقشه ناحیه‌بندی صوتی و نقشه خطوط هم‌ترابر (شکل 1) آماده گردید. با توجه به منحنی ارزیابی‌های واحد هوا ناحیه

![شکل 1: منحنی ارزیابی واحد هوا](image-url)
توجیه به روز یادون واحد هوا، با لودن ترکیص یک میکن خاص در هر یک از این دو بخش در ترکیص بخش مجاور، به شدت تاثیر گذاشت. ناحیه خیبر بخش تفکیک در ناحیه شمالی (ناحیه کمپرسور) و بخش فشرده‌سازی در ناحیه بین کمپرسور و درب‌ها (خشک‌گی) واقع یافت. با نگاهی دقیقتر به منتهی‌های از این‌کنونک این واحد، مشخص می‌گردد که در بخش جنوبی، فشرده‌سازی ترکیص صدا نسبت به سایر نواحی این واحد به نوع افراد بیشتر به‌طور کره‌ای در برخی استگاه‌ها به بالای 100 دسی‌بل هم می‌رسد. این نقاط دقت‌فرآور استخراج دستگاه‌های بی‌این در این نقطه هستند.

دریکی فشرده‌سازی واحد هوا، به دریکی دیگر وظیفه تصفیه و رطوبت‌گیری هواهای خروجی از کمپرسورهای این بخش را بر عهده دارد. ترکیص صدا بالای این دستگاه علی‌رغم وجود مقاوم در خروجی‌های خود، می‌توان ناشی از توربلاس‌ها و همچنین در سرعت‌های بالای جریان هوا باشد. توربلاس به وسیله یک چند مخترک فیک فیکی، ابعاد می‌شود.

اماده‌گری از موانع انتخابی، با توجه به مقدار ارائه شده توسط طرفینه بخشی، تغییر گردیده است. ضمن آنکه افته خبر اصلاح نیز در خصوص اجرایی از انتخاب ماشین‌کاری است که دارای شکاف‌های می‌باشد. در مطالعه حاضر نیز به نحوه جدول محاسبه مشخص می‌شود که با ارائه این پروتکل چند دسی‌بل A ترکیص کلی می‌باشد. این میزان کاهش در فرکانس‌های 1000 تا 4000 هرتز به‌طور مlicher مقدار خود از رصد ثابت می‌باشد.

نمونه‌برداری مقابله ترکیص صوت منبع می‌باشد. قابل ذکر است که در این بازی بر روی بلچ بنی از ارتفاع حدود 15 متر از سطح زمین نصب شده و به‌طور بی‌ارقی با توجه به ابعاد اینفاکت پیشنهادی است. هم‌سطح سازی بین فونداسیون درآور و زمین مجاور ضروری می‌باشد.

* محورهای منظم و همکاران

** فصال‌های علمی تخصصی طب کار

رارند".
شکل ۲: طرح شماتیک انتقال پیشنهادی

شکل ۳: مقایسه تراز فشار صوت منبع قبل و بعد از مداخله در فرکانس‌های اولتراوای

بحث

بنا توجه به نتایج اندازه‌گیری‌ها، می‌توان بیان کرد که حدود ۲۸/۵٪ از اندازه‌گیری‌های اولترا که از مداخله در ناحیه کلیه غیری در طول اثرات و حاصل در ناحیه خطر قرار دارد یکی از این ابتکار، شرایط مناسب‌تری را دارا می‌باشد.

در مطالعات با هدف ارزیابی خصوصیات انتشار صدا منبع نقطه‌ای و ارائه‌های طرح کنترل صدا سه منبع (کمپرسورها) بمب‌ها و فشار صوت این واحد در بخش نشردمزاری دیده شد. ۵۵٪ از اندازه‌گیری‌های اولترا که از این ابتکار، شرایط مناسب‌تری را دارا می‌باشد.

دانشگاه‌های اداره‌گیری واحد خود، تراز بالاتری از ۸۵ دسی‌بل A را داشته و البته ۵۵% تراز خطر آن دارای تراز بالای ۹۰ دسی‌بل A می‌باشد. ۲۴٪ از اندازه‌گیری‌های اداره‌گیری واحد هوا در بخش تفکیک است و ۲۸٪ از این بخش در ناحیه خطر قرار می‌گیرد با این حال بالاترین ممکن و حداقل تراز...
میزان افت عویب این طرح پیشنهادی جدول (87-1) همراه با کاهش تنار فشار صوت 30 دبسی و در فرکانس غالب براورد گردید (16). این امتیازات مانند مطالعه حاضر، اذعان به انتخاب روی محصولاتی دارد.

نتایج گیری

با توجه به شرایط رویز بودن مجتمع پتروشیمی مورد بررسی، با کنترل فنی صدا تنار فشار صوت منابع اصلی در بخش فشردهسازی، علاوه بر پی چندن شدت مواجهه برستل حاضر در بخش فشردهسازی می توان میزان تنار فشار صوت انتقاع استراحت بررسی واحدها که در مجاورت دوربردی بخش فشردهسازی است و نیز میزان تنار نشتر پیدا کرده به بخش تکیفیک را طور قابل ملاحظه‌ای کاهش داد. با توجه به اینکه 3/15 درصد مورد بررسی واحدها در ناحیه خطر و حادثهداری 3/15 درصد مصالحی این ناحیه احتمال صدا دارد، مسلم این عواضوگرهای مواجهه با این ترازهای صدا در بلندبندت و حتی در کوتاه‌مدت بروز خوابید نمود. با در نظر گرفتن اثرات شبیه‌ساز و مشکلات گراین غرف‌نیم‌زیاد صدا لازم است به جهت اجرای طرح حفاظتی کنترلی بر روی سایر منابع مناسب‌سازی این مجتمع، اقدامات مقتضی صورت گیرد.

سیاسی‌گزار

این مقاله حاضر نامه تحت عنوان ارزیابی آلودگی صدا و ارتقاء در میک از مجتمع‌های شرکت ملی صنایع پتروشیمی و اکثراً سنجش روش‌های کنترل آن در مقصر کارشناسی ارسد. خالق 1389 می‌باشد که با حمایت دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران اجرای شده است. ضمن آنکه نویسنده‌گان بر خود لازم‌می‌دانند که از مسئولین محترم HSE شرکت ملی صنایع پتروشیمی به عنوان حاضری مالی این پروژه و کلیه دوستانی که به نحوی در این مطالعه همکاری داشته‌اند تقدیر و تشکر نمایند.

References

دروز هنرمن، شماره دوم، تابستان 1394

فصل‌هایی در هر تحقیقی که توسط انگلیسی و همکاران مورد نظر Endres در در مطالعه دیگری که توسط انگلیسی و همکاران مورد نظر Endres در کار تحقیقاتی Grashof و همکارانی با عنوان برنامه‌ریزی صویی مجتمع‌های پتروشیمی با توجه به شرایط عملیاتی بسیاری سانتی‌نیزی مجتمع مورد بررسی و نیاز به حدود 5 دسی‌بلی به‌رد انس بحث توصیه شده، طراحی محفظه جزئی به عنوان روی برتر پیشنهاد گردید (26).

18- Metzen HA. New techniques in noise prediction. 17th International Congress on Sound and Vibration, ICSV17; July 18-22; Cairo, Egypt; 2010.

25- GolshahH. Engineering control methods in the oil industry. The first scientific congress on noise and its effects on human 1997; 63.[Persian]

Determination of the Dominant Noise Source in an Air Production Plant of a Petrochemical Industry and Assessing the Effectiveness of its Enclosing

*Monazzam MR(PhD)*¹, Farhang Dehghan S(MSc)², *Nassiri P(PhD)*³*, Ja**h**angiri M(PhD)*⁴

¹ Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
² Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
³ Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
⁴ Department of Occupational Health, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran

Received: 02/09/2012 **Accepted**: 29/01/2013

Abstract

Introduction: The purpose of this study was to assess the noise pollution and determine the dominant noise source in air production plant of a petrochemical industry, and also it aimed to evaluate the effect of encapsulation of noise source on its overall noise level.

Methods: The first step, the environmental noise measurement was done to measure the levels of noise pollution in air units of a petrochemical industry. Then, in order to determine the dominant noise source of each air units, isosonic curves were drawn. In the third phase, the efficacy of encapsulation method was selected as the best way to reduce the sound pressure level SPL of the main source (Dryer) of this unit.

Results: Results of the assessment of environmental noise revealed that the average sound pressure level in all of the air production plant was calculated over than 88.9 dB A. Considering hazard zone at isosonic curve, it was obvious that in the location of Dryer machinery, sound pressure level has increased more and SPL has been measured to 100 dB A. Compressed air dryer, was known as the main noise source. According to the efficacy of conventional methods of noise control, considering the dryer’s frequency analysis, and the condition of the unit sound enclosure was chosen as the best engineering control of noise. It was predicted that by providing the sound enclosure, overall sound pressure level will be reduced about 19/4 dB A.

Conclusion: However, more than half of the investigated unit was in caution zone, the various problems of exposure to these noise level can reveal in the short term or long term. So, in order to prevent the auditory and non-auditory effects of noise, it is necessary to provide appropriat measures to implement control projects on the other resources, which made noise in this petrochemical industry.

Keywords: Noise pollution; Environmental noise measurement; Noise control enclosure; Air Production plant; Petrochemical industry.

This paper should be cited as:

Corresponding author: Tel: +9821 88951390, Email: nassiri@tums.ac.ir