بررسی ضریب جذب ماده آلومینیوم در نانوکامپوزیت‌های آلومینیوم

 ابوالفضل برخورداری، آسیه عباسی، سیدحسن حکمتی مقدم، حسین فلاحزاده، علی جبالی

چکیده
مقدمه: صدا یکی از مهم‌ترین عوامل زیان‌آور محیط کار و فراغت‌برنگی عامل فیزیکی تهدیدکننده سلامت شاغلین است. تقریباً یکی از بهترین راه‌های کنترل صدا جاذبه‌های صوتی می‌باشد. البته با توجه به ورود گستردگی نانو در عرصه‌های مختلف علمی، یکی از کاربردهای آن طراحی و ساخت جاذبه‌های صوتی فرآیند صوت‌های نانومتری باز. تا این هدف از این مطالعه تعبیری ضریب جذب در نانوکامپوزیت‌های آلومینیوم را دو صدای مختلف نانومتری صوتی شناسی گردیده است. به طوری که دو صدای مذکور، ضریب جذب صوت با لوله میان‌دیافته صوتی فرآیند شد.

نتایج: مقایسه ضریب جذب صدا صداده و قدرت صدا در درصد و روزی (1، 2، 3، 4 درصد نانومتری) نانوکامپوزیت‌های آلومینیوم نشان داد که نانوکامپوزیت‌های آلومینیوم در فرآیند 200 هزرت و در درصد نانومتری چهار، بالاترین ضریب جذب صدا را داشت. این در حالی است که در همه ردصدهای وزنی نانوکامپوزیت‌های آلومینیوم در فرآیند 500 هزرت پایین‌ترین ضریب جذب صوت بوده.

نتیجه‌گیری: نتایج مشاهده درصد وزنی نانوذرات آلومینیوم ضریب جذب صوت بستره‌ای می‌شود و نانوکامپوزیت‌های آلومینیوم می‌توانند گزینه مناسبی برای کاهش نیروهای محیطی و صنعتی باشند.

واژه‌های کلیدی: نانوکامپوزیت‌های آلومینیوم، ضریب جذب صوت، فرآیند

نویسنده مسئول: شمبره تمبس: 08380340490، ایمیل: alijebal2011@gmail.com

تاریخ دریافت: 27/3/1398، تاریخ پذیرش: 18/11/1398

1- استادگرده روشنایی بهداشت حرفه‌ای، دانشکده بهداشت، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی بهراز، بیرز، ایران
2- دانشجوی کارشناسی ارشد مهندسی بهداشت حرفه‌ای، عضو کمیته تحقیقات دانشجویی دانشکده بهداشت، دانشگاه علوم پزشکی شهید صدوقی بهراز، بیرز، ایران
3- استادگرده مهندسی بهداشت حرفه‌ای، دانشکده پزشکی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی بهراز، بیرز، ایران
4- استادگرده مهندسی بهداشت حرفه‌ای، دانشکده پزشکی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید صدوقی بهراز، بیرز، ایران
5- استادگرده مهندسی بهداشت حرفه‌ای، دانشکده پزشکی، دانشگاه علوم پزشکی شهید صدوقی بهراز، بیرز، ایران
مقدمه

سروص و صدا امکان‌پذیری یافته‌اند و مدل‌های مختلفی از این امکان‌پذیری، شاید به شرح ذیل باشند: ۱) نسبت صدا و صدر برای سلامتی انسان، در مقایسه با صدا و صدر برای سلامتی انسان ممکن است باعث افزایش خون، خطر شکل‌گیری یافته‌ای باسئوش‌ها و افزایش در سطح افواه‌ها باشد. ۲) مدل‌های متفاوتی در منبع سازماندهی طبیعی برای سطح افواه‌ها و افزایش در سطح افواه‌ها باشد. ۳) پژوهش‌های قبلی نشان داده‌اند که باید نسبت صدا و صدر پایدار باشد و مدل‌های جدیدی برای سطح افواه‌ها و افزایش در سطح افواه‌ها باشد.
چاله قابل یا مورد نیاز برای نتیجه‌گیری

در این مطالعه ی تجربی-آزمایشگاهی به منظور تهیه نانوکامپوزیتیومینیوم از نانوذرات آلومینیوم (شرکت لیتونی آلمن) با میانگین نسبی حدود ۱۰۰ نانومتر و همچنین سطح بیش از ۱۰۰۰ مترمربع بر گرم استفاده گردید. برای چوب حاوی چوب سیب از گردیده برای نتیجه‌گیری

واگر در استان برد تهیه گردید. جسب نانوسیگن از شرکت میکا، ایران تهیه گردید. جسب چوب مورد استفاده در این تحقیق (پلی وینیل استات) به رنگ سفید با دانه‌بندی pH۳/۸۰/۳ gr/cm³ و درصد مواد جامد ۹۰۰ درصد می‌باشد.

تهیه قالب‌های مورد نیاز برای نتیجه‌گیری

در این تحقیق برای تعمیم حاصل مورد نیاز قالب مشخصی‌بازه دستگاه اندازه‌گیری ضرب جبد صدادشت به نسبت مورد استفاده گردید. روش کار بندی ترتیب بود که نخست اجزای فوق به نسبت مشخص با ترازوی دیجیتال با دقت ۱/۰٪ وزن سنجی شد و سپس درون یک ظرف پلاستیکی ریخته و به‌کار مخلوط‌گری در این مرحله خمیت

دبست آماده به مدت ۱۵ دقیقه با دست و زر داده شد تا اجرا کامل با هم مخلوط گردد. جدول ۱ وزن چسب و برای چوب برای ساخت نمونه کنترل و همچنین نسبت نانوذرات چسب چوب برای تهیه نانوکامپوزیت ها را نشان می‌ده.

جدول ۱. نمودار وزنی نانوذرات، چسب چوب و برای برای ساخت نانوکامپوزیت

<table>
<thead>
<tr>
<th>نانوکامپوزیت</th>
<th>وزن نانوذرات (گرم)</th>
<th>وزن چسب (گرم)</th>
<th>وزن براده چوب (گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آلومینیوم</td>
<td>۳۰</td>
<td>۵۰</td>
<td>۲۵</td>
</tr>
<tr>
<td>کنترل</td>
<td>۴۰</td>
<td>۵۰</td>
<td>۲۵</td>
</tr>
<tr>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۶۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۷۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۸۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۹۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
</tbody>
</table>
نتیجه توان کامپوزیت ها

نصب اول قابل چسب سنگ یک لایه زیرین و یک لایه روی از قبیل آلومینیوم نشی در آن به هنگام کنار چسبنده در آن مشکل یکتا و نانوکامپوزیت به راحتی از قابل خارج شد. سپس هماطور که قبل ذکر شد نانوذرات 100 نانومتری، این برای جهت توزین، کاملاً مخلوط و داخل قبلاً قرار داده شد. سپس قابل به دست 24 ساعت درون انکوپل 24 درجه سانتی‌گراد قرار داده شد. بعد از گذشت زمان کوبانسونی قابل از آن خارج و قابل روي ان باز گردید. لازم به ذکر است عمل پیرایی نیز روی نانوکامپوزیت‌ها نیز انجام گردید بعنی زوال و تکمیل‌های نصب با گذشت ۱۰۰۰ سانتی‌متر، آنها نسبت‌های میزان یکتا و نانوکامپوزیت حاصل ۱ و ۱۰۰۰ و ۵۰۰ با افزایش درصد نانوذرات آلومینیوم مقدار عضدی ضرب جذب صوت نیز افزایش می‌یابد. همانطور که مشاهده می‌گردد نانوکامپوزیت حاصل ۱ درصد از نانوذرات آلومینیوم در فرکانس ۱ دارای مقادیر جذب صوت کمتر از کنترل دارد. لازم به ذکر است که بالای نانوکامپوزیت‌ها در فرکانس ۵۰۰ هرتز کمترین مقادیر ضرب جذب صوت را داشته‌اند.

نتایج

نتایج ضرب جذب صدا نانوکامپوزیت آلومینیوم در چهار فرکانس (۲۵۰، ۵۰۰، ۱۰۰۰ و ۲۰۰۰) و در چهار درصد وزنی نانوکامپوزیت آلومینیوم در شکل ۱ اکتیکی مقایسه شده است. همانطوری که ملاحظه می‌شود پیشرفت ضرب جذب صوت (حدود ۷۵) در فرکانس ۲۰۰۰ هرتز برای نانوکامپوزیت حاصل ۴ درصد نانوذرات آلومینیوم بوی به طور تقریبی در فرکانس‌های ۱۰۰۰ و ۵۰۰ با افزایش درصد نانوذرات آلومینیوم مقدار عضدی ضرب جذب صوت نیز افزایش می‌یابد. همانطور که مشاهده می‌گردد نانوکامپوزیت حاصل ۱ درصد از نانوذرات آلومینیوم در فرکانس ۱ دارای مقادیر جذب صوت کمتر از کنترل دارد. لازم به ذکر است که بالای نانوکامپوزیت‌ها در فرکانس ۵۰۰ هرتز کمترین مقادیر ضرب جذب صوت را داشته‌اند.

تعیین ضرب جذب

برای تعیین ضرب جذب صوت از لوله امیدان صوت‌سنج‌های گردید. این لوله دارای طول ۱۰۰ سانتی‌متر، عرض ۹۸ میلی‌متر، دامنه فرکانسی ماکرونف ۱ تا ۲۰۰۰ هرتز، دامنه مکروانی میکرونف ۱ تا ۲۰۰۰ هرتز، از جنس بلبه ایندنی باشد. هر نمونه به طور جداگانه داخل لوله قرار داده و سپس با ارسال سیگنال صوت (سینوسی) در ۴ فرکانس اکتوباند (۲۵۰ و ۵۰۰ و ۱۰۰۰ و ۲۰۰۰ هرتز)
بحث

نتایج حاصل از این تحقیق نشان داد، ضریب جذب صدا با افزایش درصد وزنی نانوذره افزایش یافته و منجر به بهبود خواص جذب صوتی گردید. ضریب جذب مناسب داشته باشد دلیل برای اینکه در فرکانس‌ها یکی نیز ضریب جذب مناسب داشته باشد وجود دارد.

فولادی و همکاران در مطالعه‌ای با هدف بررسی میزان کاهشگذی صدا توسط نانوذره سپری‌یز پلیمری در راستای ساخت ایرلایک، به این نتیجه دست یافتند که بیشترین افتخ صوتی در ایرلایک‌های نهتیه شده در فرکانس‌های بالا بوده و اختلاف معناداری با نمونه شاهد داشته است و در فرکانس‌های پایین، افتخ صوتی نمونه شاهد نسبت به نمونه‌های دیگر نانوذره به است که موجب نتایج به دست آمده در این تحقیق است(22).

نتیجه‌گیری

در پایان به این نتیجه می‌توان رسمی که افزایش درصد وزنی نانوذره آلومینیوم تاثیر قابل توجهی بر ضریب جذب صوت دارد و از این خصوصیت می‌توان برای ساخت نانوذره آلومینیومیزه در صنعت استفاده نمود.

References


The study of sound absorption coefficient of aluminium nanocomposites.

Barkhordari A(PhD)¹, AbbasiA(MSc)², Hekmati moghaddamSh(PhD)³, fallahzadeh H(PhD)⁴, Jebali A(PhD)⁵*

¹. Professor of Department of Occupational Health Engineering, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
². MSc student of Occupational Health Engineering, Department of Occupational Health Engineering, Member of Student Research Committee, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
³. Assistant Professor of Department of Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
⁴. Professor of Department of Epidemiology and Biostatistics, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
⁵. Assistant Professor of Medical Nanotechnology, Department of Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

Received: 2015.11.18 Accepted: 2016.02.07

Abstract

Introduction: Sound is one of the most important work-related risk factors and most widespread physical factors threatening the health of workers. Almost one of the best ways to control the sound is sound absorber. Due to the extensive entrance nano in various fields of science one their applications design and use sound-absorbing panels containing nanoparticles. The aim of this study to determine the sound absorption coefficient of nanocomposites, containing aluminum nanoparticles at different percentages.

Method: This study had an experimental – Laboratory procedure. First of aluminum particles (100 nm), wood chips and glue polyvinyl acetate weight was measured the ratio of identified and wellmixed. In the next step, the obtained mixture is poured into the mold Heat resistant and transferred to 37 °C. After the preparation of mentioned nanocomposites then sound absorption coefficient values were determined by acoustic impedance tube at four frequencies, 250, 500, 1000 and 2000 Hz.

Results: The Comparison between the sound absorption coefficient of four weight percentage (1, 2, 3 and 4% of 100nm-aluminum nanoparticles) of aluminum indicated that the aluminum nanocomposite had the highest sound absorption coefficient of weight percentage 4% at frequency of 2000 HZ. While the all weight percentages aluminum nanocomposites was seen the lowest sound absorption coefficient at frequency of 500 Hz.

Conclusion: The results showed that the increasing of the percentage of aluminum nanoparticles led to increase of sound absorption coefficient and aluminum nanocomposite can be a good choice to reduce environmental and industrial noise.

Keywords: Aluminum nanocomposite, Sound absorption coefficient, Frequency

This paper should be cited as:

* Corresponding Author: Tel: 09390348478, Email: alijebal2011@gmail.com